Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro.

نویسندگان

  • R C Chan
  • D L Black
چکیده

The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cells. In this study, we examined the sequence requirements for the exclusion of this exon in nonneuronal HeLa cell nuclear extracts. We found that the repression of the N1 exon is mediated by specific intron sequences that flank the N1 exon. Mutagenesis experiments identified conserved CUCUCU elements within these intron regions that are required for the repression of N1 splicing. The addition of an RNA competitor containing the upstream regulatory sequence to the HeLa extract induced splicing of the intron downstream of N1, indicating that the competitor sequence binds to splicing repressor proteins. The similarities between this mechanism for src splicing repression and the repression of other regulated exons point to a common role of exon-spanning interactions in splicing repression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro.

A conserved positive-acting RNA sequence was found to be required for the neuron-specific splicing of the mouse c-src N1 exon. The sequence lies in the intron between exons N1 and 4, close to the N1 donor site. Normally, only the neural-specific splicing of exon N1 required this sequence. When the intron downstream of N1 was shortened, splicing at the constitutive exon 4 acceptor also became de...

متن کامل

The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream.

The neural cell-specific N1 exon of the c-src pre-mRNA is both negatively regulated in nonneural cells and positively regulated in neurons. We previously identified conserved intronic elements flanking N1 that direct the repression of N1 splicing in a nonneural HeLa cell extract. The upstream repressor elements are located within the polypyrimidine tract of the N1 exon 3' splice site. A short R...

متن کامل

Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1.

The splicing of the c-src exon N1 is controlled by an intricate combination of positive and negative RNA elements. Most previous work on these sequences focused on intronic elements found upstream and downstream of exon N1. However, it was demonstrated that the 5' half of the N1 exon itself acts as a splicing enhancer in vivo. Here we examine the function of this regulatory element in vitro. We...

متن کامل

A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon.

The mouse c-src gene contains a short neuron-specific exon, N1. To characterize the sequences that regulate N1 splicing, we used a heterologous gene, derived from the human beta-globin gene, containing a short internal exon that is usually skipped by the splicing machinery. Various fragments from the src gene were inserted into the globin substrate to measure their effects on the splicing of th...

متن کامل

Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization.

The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 1995